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ABSTRACT 

Conditions for the embedding of a Banach space as a dense subspace of a 
continuous function space are studied. Necessary and sufficient conditions 
for a Baaach space to be isomorphic to a P1 space are found. 

1. Introduction. Suppose V is a Banach space. A biorthogonal collection 

{(b~,fi)}~x is said to be a Markushevich basis for V provided B =  {bi}~,/ 

is fundamental in V and ~ = {f~}i, x is total over 11. The purpose of  this paper is 

to consider an extension of this idea which results from assuming that the eoUection 

(B,y) under study satisfies only an extended biorthogonality condition intro- 

duced by Kaplan in [4]. 

In this paper attention is restricted to the problem of  embedding a Banach space 

which admits a generalized Markushevich basis as a dense subspace of  a con- 

tinuous function space (Theorem 1). One obtains as a corollary to this embedding 

theorem the result that there exist Banach spaces which do not admit Markushe- 

vich bases. In particular if  F is an uncountable set m(F) admits no Markushe- 

rich basis. This has apparently not been previously noted in the literature. Con- 

ditions for the mapping of Theorem 1 to be an onto map are found (Theorem 2). 

Application of  Theorem 2 is made to some problems in measure theory 

(Example 1). 

A Banach space V is said to be a Px space if whenever V is contained in a Banach 

space U there exists a projection of norm less than or equal to 2 of  U onto 11. 

As a final application of the embedding theorems a set of necessary and sufficient 

conditions for a Banach space to be isomorphic to a Pt  space is obtained 

(Theorem 3). 

2. Notations and basic definitions. In this paper only Banach spaces will be 

considered although many of  the basic concepts have meaning in a more general 

setting. The Banach spaces may be over either the real or the complex field, 
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and the term scalar will be used to refer to either of these fields. I f  V is a linear 

space the zero functional on V will be denoted by 0. If V is a linear space and S 

is a subset of  V then sp S will denote the span of S. All topological spaces con- 

sidered here are assumed to be Hausdorff spaces. If  H is a locally compact space 

then Co[/-/] will denote the uniform closure of  the scalar valued continuous 

functions of compact support on H. Most of the terminology of this paper will be 

that of  [3]. For convenience, some of the definitions from [3] and [4] are re- 

produced here. 

DEFINITION 1. ([3], Definition 1.) Suppose X is a non-void set and P is a 

collection of  subsets of  X. The statement that P is a proto-ring means that if  

each of  A and B is in P then there exist finite disjoint collections, {E~}iv=l 

F and {Fj}]=I, of elements of P such that AnB=(.J]'=lEiandA~ B = [..Jj= 1 j. 

I f P  contains a finite disjoint collection {GK}[ = x such that X = (.J~ = 1 Gk then P will 

be said to be a proto-algebra. 

DEFINITION 2. ([4], Section 2.) Suppose V is a Banach space and B and 7 are 

subsets of Vand V* respectively. The pair (B, 7) will be said to be biorthogonalin the 

wide sense (abbreviated as bows) if it satisfies the following conditions I and II: 

I. a) If  b ~ B and f ¢ 7 then f(b) is zero or one; 

b) No f is zero at every b, and for each b in B there is some f in y such that 

f(b) is one. 

A finite subset {b j} k = 1 of  B will be said to be an 7-orthogonal set if no f in 7 

has value one at more than one b j, j = 1, 2,-.-, k. 

II. The 7-orthogonal sets of  B form a directed set under the ordering -< defined 

by: 

q k {bj}k=x "< {b/}i=l iff {bj}j= 1 c sp {b'i)~= 1 . 

DEFINITION 3. ([3], Definition 5.). Suppose V is a Banach space and 

(B c V,7 = V*) is bows. An 7-orthogonal subset {bj}k=l of B will be said to be 

a full 7-orthogonal subset if every element of 7 has value one at some b j, 

j = 1,2,..-,k. 

Given Kaplan's extension of  the concept of biorthogonality one has an obvious 

extension of the concept of a Markushevich basis. 

DEFINITION 4. Suppose V is a Banach space and (B c V,7 ~ V*) is bows. 

The statement that (B, 7) is a generalized Markushevich basis for V means that B 

is fundamental in V and 7 is total over V. 
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It might be noted that the definitions of generalized and dual generalized 

bases can be extended in the same way as has been done here for Markushevich 

bases. The full theory of similar bases as developed by Davis and Arsove can be 

very simply extended to the resulting structures. There seems however to be little 

point to such extensions and they will not be further considered here. 

For the remainder of this paper it will be assumed that V is an infinite dimen- 

sional Banach space, B is a subset of V, )' is a subset of V*, and ~ is the weak 

star closure of 7. 

3. The basic embedding theorem. The primary purpose ot this section is to 

present a proof for the following theorem: 

THEOREM 1. Suppose V is a Banach space and (B,)') is a generalized 

Markushevich basis for V. I f  )' is norm bounded then there exists a Boolean 

space H and a continuous one-to-one map e of V into Co['//] such that el-V] 

is dense in C0[H]. Furthermore H is compacy if and only if  B admits a full  

)'-orthogonal set. 

In order to facilitate the proof of Theorem 1 it is helpful first to consider two 

preliminary lemmas. 

LEMMA 1. I f  (B,)') is bows and B is fundamental then (B,)") is also bows, 

where )" denotes ~ ,~ {0}. Furthermore a finite subset of B is (full))'-orthogonal 

if  and only if  it is (full))"-orthogonal. I f  B admits a full  )'-orthogonal set then 

0 is not a w*-limit point of)'. 

Proof. Since B is fundamental, it follows from the definition of )" that (B,)") 

satisfies Condition I of Definition 2. If (bi}k= 1 is an )"-orthogonal subset of B 

then it is obviously )'-orthogonal. If  (bi}k=l is )'-orthogonal it follows that no 

element f of)"  ,~ )' can have the value 1 at two elements of {bi)~= 1 since each such 

f is the pointwise limit of a net in )'. Therefore a finite subset of B is )'-orthogonal 

if and only if it is )"-orthogonal. A similar argument yields the result that a finite 

subset of B is full )'-orthogonal if and only if it is full )"-orthogonal, and that if B 

admits a full ),-orthogonal subset then 0 is not a w*-limit point of),. This completes 

the proof. 

It might be noted in passing that if (B,)') is biorthogonal rather than just bows 

then ~' is )', since 0 is the only w*-limit point of 7 in this case. 

LEMMA 2. Suppose (B,~) satisfies the conditions of Lemma 1 and that 

is norm-bounded. Then ~' with the relativized w*-topology is a Boolean space. 
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Furthermore ~' is w*-compact if and only if B admits a full ?-orthogonal 
set. 

Proof. For each b in B, let E(b) be the set {f: f~?'  and f(b) = 1}. It follows 

from Lemma 1 and the proof of Theorem 4 in I3] that if B admits a full ?-ortho- 

gonal subset then P = {E(b):beB} u {~} is a proto-algebra of subsets of ~. 

If B does not admit a full ~-orthogonal set then it may be shown by a straight- 

forward argument based upon Proposition 3 of 1'4] that P is a proto-ring. It is also 

an immediate consequence of Definitions 1 and 3 that if P is a proto-algebra 

then B admits a full ?-orthogonal subset. 

Since P is a proto-ring, finite intersection of elements in P can be written as 

finite disjoint unions of elements in P and therefore P is the base for a topology, 

• , for ~'. It is clear from the definition of P that z is weaker than the relativized 

w*-topology on ?'. Since (B,?') is bows by Lemma 1, it follows from Condition II 

of Definition 2, that z is Hausdorff. Since ~ is norm bounded it follows that any 

w*-closed subset of y' is w*-compact. Suppose b is an element of B and consider 

the w*-closure of E(b). Since f(b) = 1, VfeE(b), 0 is not a w*-limit point of 

E(b) and it follows that E(b) is w*-closed. Hence E(b) is w*-compact and so the 

w* and z-topologies agree on E(b). From this it follows that the w* and r-topologies 

agree on ~', and that P is a base of compact open sets for the relativized w*- 

topology on y'. Hence ~' with the relativized w*-topology is a Boolean space. 

If 0 is not a w*-limit point of ~ then y' is w*-closed and hence compact. In this 

case it follows that some finite disjoint collection of elements in P covers ~', or in 

other words P is a proto-algebra. This completes the proof. 

There is another way in which one may characterize y' with the relativized 

w*-topology. It follows from Theorem 1.1 of 17] that the ring generated by P, 

R(P), is the collection of all finite disjoint unions of elements of P. Hence every 

set in R(P) is a compact open subset of y' with the relativized w*-topology. Con- 

versely since P is a base of compact open sets for this topology, every compact 

open set is in R(P). It therefore follows that ~' with the relativized w*-topology 

is homeomorphic to the Stone space of R(P). 
If (B, y) is a biorthogonal collection which satisfies the conditions of Lemma 2 

it is an immediate consequence of the proof of Lemma 2 and the observation 

that y' is ~ that the relativized w*-topology on y is the discrete topology. 

Proof of Theorem 1. Let H denote ~' with the relativized w*-topology and 

let 8 be the mapping of V into Co[H] defined by: 
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ev(f) =f(v),  Vfe  7'. 

Since 7 is total and norm bounded it follows that ~ is one-to-one and continuous. 

If b eB then ~b is Zr(b). Since P is a proto-ring it follows that if b and b' are in B 

then there exists an element v in sp B such that ev = ~b • 8b'. Since 0 does not 

belong to 7' and B is fundamental in V, e[B] does not vanish identically at any 

point of 7'. The hypothesis that B is fundamental also implies that e[B] separates 

the points of V'. Since e[B] contains only real valued functions it follows from 

the Stone-Weierstrass theorem that 8[spB] is dense in Co[/-/]. The remaining 

assertions of the theorem are consequences of Lemma 2. 

If V is a Banach space which admits a Markushevich basis then it is easy to see 

that V admits a Markushevich basis (B, 7) which satisfies the conditions of Theorem 

1; the comments following Lemma 2 then imply that V may be continously 

embedded as a dense subset of a Co space, namely Co[7]. It then follows from 

a comment of Day in [2] (p. 518, (3)) that every Banach space with a Markushevich 

basis is isomorphic to a strictly convex space. In view of the results of [2] this 

gives one way to show that there exist Banach spaces which do not admit Marku- 

shevich bases. In particular if F is uncountable m(F) admits no Markushevich 

basis ([2], Theorem 8, Corollary). 

4. Some applications of Theorem 1. 

THEOREM 2. Suppose that (B,7) satisfies the conditions of Theorem 1. In 

order that the mapping ~ of Theorem 1 be an isomorphism it is necessary and 

suj~cient that there exist a positive number 2 with the property that for each 

7-orthogonal set (bi)~=t and scalar sequence (~}~=1, 

P 

Proof. If {b~}~=l is an 7-orthogonal set then E(b~)nE(bj) is empty when b~ 

is not bj. It follows therefore that sp {ebt}~= 1 is isometrically isomorphic to l~. 

Let {C~}~ ~,4 denote the collection of 7-orthogonal subsets of B, and for each e, 

let D~ denote sp C~. It follows from the definition of 7-orthogonality that the 

collection {D~}~ ~ is directed by set inclusion and that U ,  ~AD~ is dense in E It 

follows from the proof of Theorem 1 that these same properties hold for {~[D~]}, ~ A. 

A Banach space V with the property that there exists a directed by inclusion 

family of subspaces (E,}~ ~,t of V whose union is dense in V and such that each 

E~ is isometrically isomorphic to some l~) is said by Michael and Pelczyfiski ([5]) 
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to be a II]%space. Thus Co[HI is a Hi%space. If e is an isomorphism then it 

follows that there exists a positive number 2 such that if {bi}~'= 1 is 7-orthogonal 
p and {~}~ = 1 is a scalar sequence then 

sup I ,1. 
i=1  l_si_s~ 

This condition is also sufficient, since if it is satisfied it is clear that 

8-1]U,~aeED,] is continuous and both U,~AD, and U,~aeED,] are dense 

subsets of their respective spaces. This completes the proof. 

It might be noted that since C0[H ] is a II~-space it follows from a comment 

in [5], p. 189, that if V is reflexive then e cannot be an isomorphism. 

A bows collection which satisfies the final hypothesis of Theorem 2 will be said 

to have property III. If B admits a full ?-orthogonal subset then Theorem 2 holds 

if "?-orthogonal" is replaced by "full ?-orthogonal" in the statement of the 

theorem. This follows from the fact that any ?-orthogonal set is followed by a full 

?-orthogonal set in the ordering < (cf. [3], proof of Theorem 4). It follows there- 

fore that the subspaces of {D~}~ a which correspond to full ~-orthogonal sets 

are cofinal in the complete collection. 

EXAMPLE 1. Suppose X is a non-void set and P a proto-ring of subsets of X. 

Let Q(X,P) denote the collection of scalar valued functions on X which are 

uniformly approximatible by finite linear combinations of characteristic functions 

of sets in P. This usage of the symbol Q(X,P) differs from the usage introduced 

in [7]. It is clear that Q(X,P) with the sup norm topology is a Banach space. 

Let B denote the collection of characteristic functions of non-void sets in P, and 

let y denote the collection of evaluation functionals; i.e. the collection {q~x: x ~ X}, 

where q~x is defined by ~ (g )  = g(x), Vg ~ Q(X, P). It follows by similar arguments 

to those in [3], Section 4, that (B, 7) is bows and hence a generalized Markushevich 

basis for Q(X, P), that B admits a full v-orthogonal set if and only if P is a proto- 
p p algebra, and that if {b~}~ =I is an 7-orthogonal subset of B then sp {b~}~=1 is iso- 

metrically isomorphic to Ip. Hence there exists a Boolean space H, H being 

compact if P is a proto-algebra, such that Q(X, P) is isomorphic to Co[HI. It is 

not difficult to show that in this case e is actually an isometry. 

It has been shown by other methods that if P is an algebra ([6]) or a proto- 

algebra ([7]) then Q(X, P) is isometrically isomorphic to C[H], for some compact 

Hausdorffspace H. The result of Example 1 in the case that P is a ring or proto-ring 

has apparently not been previously noted in the literature. 
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Other related results from measure theory may be obtained by these same 

methods. For example, Theorem 4.3 of Yosida and Hewitt in [8] which asserts 

that Loo(T,J//,..¥') ([8], Definition 2.1) is isometrically isomorphic to C[H], for 

some compact space H, may be obtained from Theorem 2 by taking for B the 

equivalence classes generated by characteristic functions of sets in J / , - ,  ~ and 

for y the functionals generated by the co measures of Theorem 4.1, [8]. 

Since it is known that every real P1 space is isometrically isomorphic to C[H] 

where H is compact and extremally disconnected; cf. [1], Theorem 3, p. 94; and 

since a compact extremally disconnected space is Boolean, it is of some interest 

to consider conditions under which the space H of Theorem i is in fact extremally 

disconnected, assuming it is compact. It follows from the remarks following 

Lemma 2 that a subset S of H is open and closed if and only if there exists an 

y-orthogonal set {bi}~= 1 such that S is ~_J~= 1E(bi). Hence the condition that H be 

extremally disconnected is equivalent to the condition that for each subset B' of B 

there exists an ?-orthogonal set {hi}f= j such that 

p 

U E(b) = U E(b,), 
b i=1 

closures being taken in the relativized w*-topology. This in turn is clearly equivalent 

to the condition that an element f of 7' annihilates ~J~'___ 1E(b~) if and only if every 

net in 7' which w*-converges to f contains a subnet each element of which 

annihilates B'. A bows collection (B,),) which satisfies this condition will be said 

to have property IV. 

These observations suggest: 

THEOREM 3. Suppose that V is a real Banach space. A necessary and sufficient 

condition that V be isomorphic to a P1 space is that there exist a generalized 

Markushevich basis (B,y) for V such that: 

1) y is w*-compact, 

2) (B,y) has properties III and IV. 

Proof. The sufficiency of the desired conditions is an immediate consequence 

of Theorem 2 and the discussion preceeding the definition of property IV. 

Now suppose H is a compact extremally disconnected space. Let B be the 

subset of C[H] to which a function g belongs if and only if g is the characteristic 

function of a compact open subset of H, and let y denote the evaluation functionals 

on C[H]. Since (B, 7) is clearly a generalized Markushevich basis for C[H] and 
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since B admits a full 7-orthogonal set it follows from Lemmas 1 and 2 that (B,7') 

is a generalized Markushevich basis for C[H] with 7' w*-compact. It can be 

shown; cf. the remarks following Example 1, [31; that C[H] is Q(H,P) where P 

is the algebra of compact open subsets of H. It therefore follows that C[H] is 

isometrically isomorphic to Co[7'] and so H and 7' are homeomorphic. It then 

follows that (B,7') has property IV. Therefore, if V is isomorphic to C[H], 
( J - l i B  l, J*[7']) ,  where J denotes an isomorphism on V onto C[H], is a genera- 

lized Markushevich basis for V such that J - 1  [B] admits a full ~'* [V']-orthogonal 

set, J*[7 ' ]  is w*-compact, and ( J - l I B ] ,  J*[7 ' ] )  has property IV. Since the 

7-orthogonal subsets of B determine a 1-I F decomposition for C[H] it follows 

that ( J - l I B ] ,  J*[7 ' ] )  has property III. This completes the proof. 

5. Generalizations. An examination of the proofs of the lemmas and theorems 

of the previous sections show that the full force of the assumption that (B, 7) is 

bows is used only to show that 7' is Boolean in the relativized w*-topology. This 

suggests the following generalization: 

DEFINmON 5. Suppose V is a Banach space. The statement that (B c V, V c V*) 

is pseudo-bows means that 0 does not belong to B and: 

I. If (bl, b2) e B x B then there exists v in sp B such that 

f(v) =f (b l )  • f(b2), Vf e 7. 

II. The finite linearly independent subsets of B are directed by < .  

It is not difficult to show that if (B,7) is pseudo-bows and B is fundamental 

then (B, 7') is also pseudo-bows. It can then be shown by methods almost identical 

to those used in the proof of Theorem 1 that if 7 is total over V and norm bounded, 

and e is defined as in Theorem 1, then ~ is a one-to-one continuous map of V into 

a dense subspace of Co[7'], where 7' is assumed to be topologized with the rela- 

tivized w*-topology. Furthermore it follows in the same manner as in Theorem 2 

that ~ is onto, and hence an isomorphism, if and only if there exists a positive 
b v number 2 such that if { ~}i=t is a linearly independent subset of B and {~}~=~ 

is a scalar sequence then 

P 
,=~10qbl < 2  sup 10ql. 

In conclusion, it seems only fair to state that the author has been unable to find 

any applications of this generalization. 
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